IAEA Helps Romania Enhance Exercises on Transport Security

Strengthening the security of nuclear and other radioactive material in transport, and developing practical skills for planning, conducting and evaluating transport security exercises was the focus of a recent IAEA workshop held in Romania.
“Nuclear and other radioactive material is regularly transported from one place to another for various uses, such as for medical applications, agriculture, nuclear power and scientific research,” said Elena Buglova, IAEA Director of Nuclear Security. “When this material is in transport, whether nationally or internationally, it is potentially vulnerable to security threats, for which we need to be vigilant.”
The four day workshop included classroom presentations and field demonstrations, as well as a virtual exercise in which participants watched a simulated event involving an attempted malicious interception of a vehicle transporting a radioactive source, and practiced evaluating the situation and developing an appropriate course of action in a realistic and interactive way. These actions included summoning additional response forces and executing evasive and protective maneuvers to prevent the adversaries from achieving their objective.
“Romania experiences a high number of nuclear and other radioactive material shipments both within and across its borders,” said Sorin Repanovici, Senior Expert at the Romanian National Commission for Nuclear Activities Control (CNCAN). “Ensuring that our response plans are effective and that all national stakeholders are fully trained to rapidly respond to a nuclear security event during the transport of these materials is of utmost importance.”
“By practicing scenarios during exercises and assessing our capabilities, we can establish good practices, as well as identify areas needing improvement, so we can then make targeted efforts to strengthen our national nuclear security regime,” he added.
It is estimated that worldwide, around 20 million shipments of radioactive materials are transported every year. The IAEA assists Member States to enhance their capabilities to help ensure both the safety and security of nuclear and other radioactive material during transport. Safety, in this context, refers to protecting the public from the radioactive contents of a package, whereas security refers to guarding nuclear and other radioactive material with locks, seals and other technologies and methods to prevent it from falling into the wrong hands.
Nineteen participants from national stakeholder organizations involved in nuclear security took part in the workshop, including nuclear security response forces, the national regulator, and nuclear facility operators and carriers. Discussions focused on the need for robust coordination among stakeholders and the importance of conducting and learning from regular transport security exercises, in order to properly evaluate the readiness of response forces to deal with a nuclear security event during transport.
The workshop was conducted in a hybrid format, which included in-person presentations from local and IAEA instructors, as well as virtual contributions from experts in the United Kingdom and the United States. The Romanian Horia Hulubei National Institute of Physics and Nuclear Engineering and the General Inspectorate of the Gendarmerie provided a practical demonstration of a radioactive material transport vehicle and the physical protection equipment used by response forces. The virtual transport security exercise was conducted remotely with the assistance of experts from Oak Ridge National Laboratory in the United States, who used newly developed innovative exercise software to portray the hypothetical nuclear security event using advanced high-resolution satellite imagery.

Report First 3 months of 2021 brought billion-dollar disaster, warm start to spring for U.S.

Since January, conditions across the U.S. have been running warmer and wetter than normal. The nation also recorded its first billion-dollar weather and climate disaster of 2021 — the deadly deep freeze that enveloped much of the central U.S. in February — and two tornado outbreaks in late March.
The month of March turned out a bit warmer and drier than average, according to NOAA’s National Centers for Environmental Information.
Here are more highlights from NOAA’s latest monthly U.S. climate report:
Climate by the numbers
Year to date | Billion-Dollar Disasters
The average U.S. temperature for the year to date (January through March) was 36.9 degrees F (1.8 degrees above average), which ranked in the warmest third of the record.
The contiguous U.S. also kicked off the year a little on the wet side, with a year-to-date average rainfall of 6.55 inches — 0.41 of an inch above average.
Most notable, the U.S. saw its first billion-dollar disaster of 2021 that had a devastating death toll: At least 125 people died as a direct or indirect result of a mid-February blanket of arctic weather that dropped temperatures to historic lows across the central United States. Texas experienced the majority of the property and infrastructure losses that were incurred by more than a dozen states. The preliminary total damage estimate for this extreme event — in excess of $10 billion — makes it the most costly winter weather disaster on record for the U.S., surpassing the so-called “Storm of the Century” that struck the Gulf Coast all the way up to Maine in 1993.
March 2021
The average monthly temperature across the contiguous U.S. was 45.5 degrees F (4.0 degrees above the 20th-century average) and ranked in the warmest third of the climate record.
Above-average temperatures were observed across much of the country, from the Northwest to the Northeast, as well as from the Great Lakes to the Gulf of Mexico. North Dakota, for example, had its fourth-warmest March on record.
The average precipitation in the contiguous U.S. last month was 2.45 inches (0.06 of an inch below average), ranking in the middle third of the climate record.
Below-average precipitation fell across the Northwest, northern Plains, and Northeast, as well as portions of the Southeast, Deep South and West. Both Montana and North Dakota saw their second-driest March in 127 years.
More notable climate events in March
Deadly tornado outbreaks: In March, two rounds of deadly severe weather and tornadoes raked the U.S. South. More than 100 tornadoes were reported during the two outbreaks (March 17-18 and March 25-27). One particularly violent EF3-tornado struck Calhoun County, Alabama, on March 25 and caused five deaths.
A chilly, wintry month for Alaska: The state shivered through its coldest March in four years. The average March temperature for Alaska was 7.2 degrees F, 3.6 degrees below the long-term average. The capital city of Juneau reported its snowiest March since 2007.
Drought improved slightly: By the end of March, the U.S. Drought Monitoroffsite link reported that nearly 44% of the contiguous U.S. was in drought, down from 46.6% at the beginning of the month. Drought improved across parts of the central Rockies, central Plains, Puerto Rico and Hawaii.

Guidelines for Cybersecurity in Hospitals: New Online tool

The new tool helps healthcare organisations identify best practices in order to meet cybersecurity needs when procuring products or services.
To facilitate the use of the Procurement Guidelines for Cybersecurity in Hospitals published in 2020, ENISA releases an online tool today to support the healthcare sector in identifying procurement good practices to meet cybersecurity objectives when procuring products or services.
In addition, the Agency also publishes a concise version of the procurement guidelines dedicated to the sector in each of the 24 EU official languages.
Cybersecurity in Healthcare: why does it matter?
The COVID-19 pandemic demonstrated the value of eHealth services such as telemedicine and remote patient care.
Since it has become increasingly digital and interconnected, the healthcare sector needs to consider cybersecurity as an enabler and as a key factor for ensuring the resilience and availability of key healthcare services.
Cybersecurity needs to be envisaged throughout the procurement lifecycle. IT departments should be involved in procurement activities as the cybersecurity implications in the procurement of any product or service should be well understood and consistently addressed by healthcare organisations.
EU Agency for Cybersecurity Executive Director, Juhan Lepassaar, declared: “Securing eHealth today means ensuring the resilience of the EU’s life support system, the healthcare sector. ENISA is committed to shape the ICT environment needed to prevent cybersecurity incidents and attacks on our healthcare sector.”
Procurement Guidelines and online tool: What for?
The online tool was developed as a complement to the procurement guidelines for cybersecurity in hospitals. Its purpose is:
- To help healthcare organisations to quickly identify the guidelines that are most relevant to their procurement context such as assets procured or related threats;
- To promote the importance of a good procurement process to ensure appropriate security measures.
To facilitate the dissemination of good practices across all healthcare organisations across the EU, a concise version of the procurement guidelines is now made available in the 22 official EU languages and the full version is available in english and spanish languages.
The report on procurement guidelines has already generated a significant interest in the healthcare cybersecurity community.
Stakeholders in the sector, including members of the eHealth Security Experts Group suggested the idea of an interactive format of the guidelines making it possible to customise searches and help decision making through informed procurement.
The guidelines were translated in order to allow health organisations across Member States to directly access the content in their own language.
Who is it meant for?
- Procurement officers of healthcare organisations;
- Healthcare professionals with technical positions or in charge of IT systems and equipment;
- Chief level executives such as CIO, CISO, CTO;
- The EU citizens involved in or seeking to develop knowledge and awareness on such processes.

European Space Agency signs Memorandum of Intent with Public Safety Communication Europe

Public Safety Communication Europe (PSCE) and the European Space Agency (ESA) have signed a Memorandum of Intent (MoI) to support the utilisation of satellite applications for Public Safety.
ESA and PSCE will work together under the new MoI towards establishing interoperable public safety communications systems.
The MoI will support the emergence of space-based applications in the Public Safety domain such as public safety services relying on secure mobile broadband communication solutions. These include applications within disaster preparedness, response and resilience, situational awareness, assessments of damages, navigation-based services for tracking and coordinating rescue forces on-site and for emergency vehicles.
"ESA Space Solutions and the 4S Strategic Programme Line will support through this agreement the emergence of solutions making use of secure satellite communications for institutional Public Safety user communities. This can be achieved as of today through existing satellite telecommunications infrastructures. In the future it will be possible to make use of new and innovative infrastructures with enhanced capabilities. Early pilots and demonstrations will showcase the unique benefits granted by satellites to the user communities and early adopters", says Rita Rinaldo, ESA
"The cooperation with ESA will help to explore complementary solutions that will contribute to cover capability gaps and needs for public safety. It is of extreme importance to improve public safety communication systems with cutting-edge and rapidly deployable solutions that will facilitate PPDR missions", explains Marie-Christine Bonnamour, PSCE.
The cooperation between ESA and PSCE will be activated as a first step through PSCE participation in the ongoing user studies on "Satellite Applications for Public Safety".
PSCE will contribute to the identification of the needs of public safety stakeholders such as emergency services, fire brigades and law enforcement.

Building Trust in the Digital Era: ENISA boosts the uptake of the eIDAS regulation

The European Union Agency for Cybersecurity issues technical guidance and recommendations on Electronic Identification and Trust Services helping Member States to implement the eIDAS regulation.
The European Union Agency for Cybersecurity (ENISA) completed a package of five reports in order to boost the implementation of the eIDAS regulation and promote the uptake of Electronic Identification and Trust Services. This work falls under the scope of the EU Cybersecurity strategy for the Digital Decade.
ENISA has been in the forefront of the developments on eIDAS since 2013 and with the Cybersecurity Act, established in 2019, the Agency has an extended mandate to support and assist the European Commission and the Member States in the area of electronic identification.
In this challenging period, the “EU digital ID scheme for online transactions across Europe” initiative will drive the revision of the eIDAS and will promote digital identities for all Europeans. ENISA in order to support the Commission has undertaken activities to explore the security considerations for trust service providers and remote identity proofing.
Four of the reports on trust services form an update of ENISA’s guidelines for qualified trust service providers. They represent a voluntary toolset designed to help those trust service providers comply with eIDAS. Specifically, they include:
- technical guidance on the security framework for Qualified Trust Service Providers (QTSP) and for the non-Qualified ones;
- security recommendations for Qualified Trust Service Providers based on Standards;
- guidelines on Conformity Assessment of Trust Service Providers.
A fifth report includes an analysis of the methods used to carry out identity proofing remotely and exploring security considerations. Remote identification allows customers to have their identification information collected and validated without the need for physical presence to the premises of the operator. This has become crucial during the COVID-19 pandemic as it allows access to cross-border online services offered by Member States.
Technical Guidelines on Trust Services
ENISA issued the reports in order to update existing recommendations and guidelines issued in 2017 for qualified trust services. The purpose of these reports is therefore to focus on the requirements set by the eIDAS regulation and the emergence of new standards and new TSP services.
The new guidelines are presented in four different reports according to the following topics:
- trust service providers (qualified or not) looking for guidance on how to meet the requirements of the eIDAS Regulation;
- service providers seeking to clarify whether they qualify as a trust service provider according to the provisions under the eIDAS regulation;
- relying parties seeking to evaluate to what extent their trust service provider complies with the eIDAS requirements.
As a result, the set of recommendations include:
- Security Framework for Qualified Trust Service Providers and for Non-Qualified Trust Service Providers. These guidelines consider the greater potential variety encountered in non-qualified trust service providers;
- Security Recommendations for Qualified Trust Service Providers based on Standards, and Guidelines on Conformity Assessment of Trust Service Providers.
These guidelines have been consulted with and validated by experts in the eIDAS field from various sectors.

ITU Handbook update: Wireless guidelines to support intelligent transport

As the world’s population approaches 8 billion, with more and more people migrating to ever-expanding cities, life and work are also becoming increasingly mobile.
But while these long-term trends can boost quality of life and create new communities, they also bring unprecedented traffic congestion, air pollution, and road safety challenges.
Managing these negative impacts calls for new levels of intelligence and responsiveness in the world’s transport systems.
Since most of us rely on some form of transport in our everyday lives, a tremendous number of people stand to benefit from smarter mobility.
What are ITS?
Intelligent transport systems (ITS) combine computers, communications, positioning, and automation technologies to improve the safety, management, and efficiency of terrestrial transportation.
Systems using wireless communications, sensors, and computer and control technologies are well placed to ease traffic congestion and reduce incidents. Communication standards ensure interoperability and make ITS easy for anyone to use.
Land Mobile Handbook updated
Growing ITS use increases the need for well-informed digital infrastructure planning, especially in relation to wireless-based land mobile systems. To strengthen decision-making in this area, the International Telecommunication Union (ITU) has published an updated volume of a key reference guide, the Handbook on Land Mobile (including Wireless Access), whose fourth volume deals with ITS.
The Handbook is designed to assist in training engineers and planners in regulating, planning, engineering, and deploying these systems, especially in developing countries.
The new Volume 4 replaces the 2006 edition. Development of the multi-volume Handbook began in the late 1990s, aiming to help developing countries build state-of-the-art land mobile services of all kinds.
The five volumes published to date are:
• Volume 1: Fixed Wireless Access
• Volume 2: Principles and Approaches on Evolution to IMT-2000
• Volume 3: Dispatch and Advanced Messaging Systems
• Volume 4: Intelligent Transport Systems
• Volume 5: Deployment of Broadband Wireless Access Systems
Volume 4 summarizes the current and developing use of wireless communications in ITS around the globe, including ITS architecture and applications. Despite rapid uptake, ITS remains in its infancy as a technology.
The new volume gives an overview of wireless communications used in ITS globally by 2020.
It also includes chapters on ITS applications, ITS communication architecture, radio technologies for ITS, and international and national standardization. The final chapter describes radio frequency usage for ITS systems.

The Bahamas strengthens its cybersecurity capacity

The Bahamas has launched a project with ITU to set up a national Computer Incident Response Team (CIRT) to help protect the small island country’s critical digital infrastructure and data.
The National Cybersecurity Project, started in January and officially launched in February at national level, aims to help assess current Bahamian capabilities in this rapidly evolving field, as well as develop its National Cybersecurity Strategy.
The national CIRT will also support the government in building national cybersecurity expertise, closing human resource gaps, and supporting the elaboration of a cybersecurity framework and policies. Bahamian officials must do all they can “to put mechanisms in place to protect the government’s systems and citizens’ data from exposure to [cyber] attacks,” said the State Minister for Finance, Kwasi Thompson.
Digitizing hundreds of government services
The government’s recent decision to digitize more than 200 public administration services over the next five years has heightened the country’s need for a well-equipped cybersecurity team that can identify, defend, manage, and respond to cyber threats, Thompson added.
“The creation of this National Cybersecurity Strategy will help with review and further implementation of cyber legislation for the protection of citizens and clients,” he said.
Rapid growth in online business transactions – among both government entities and the private sector – makes cybersecurity enhancements paramount. The Bahamas, like other small island developing states in the Caribbean, needs to provide a safe online environment that minimizes any risks associated with online service provision.
The project will also support the development of related national cybersecurity platforms, including a national public key infrastructure (PKI), e-government services (including national identity services), and an access management framework.
ITU’s Telecommunication Development Bureau Director, Doreen Bogdan-Martin, highlighted the project’s region-wide significance. Projects like this one on the Bahamas will strengthen the Caribbean “cybersecurity supply chain” and reinforce international cooperation to combat cyber threats, she said, thanking the Bahamian government for seeking ITU support and expertise.
Building skills and updating tools
Key project objectives include a National CIRT Readiness Assessment, a Cybersecurity Capacity Maturity Model (CMM), a National Cybersecurity Strategy and Action Plan, and all necessary capacity building and service upgrades to activate the national CIRT, said Bruno Ramos, ITU Regional Director for the Americas.
The project is set for full implementation by the end of 2022, with interim steps including six months of ITU support help the CIRT reach maturity.
The national CIRT’s skills and tools will need constant updating, Ramos added. “It is vital to equip the response team with new technologies, deploy additional services, provide technical training, and coordinate and collaborate with other international organizations.”

Building a Resilient Railway Infrastructure

2021 has been chosen as the European Year of Rail by the European Commission. The European initiative aims to highlight the benefits of rail as a sustainable, smart and safe means of transport to support the delivery of its European Green Deal objectives in the transport field.
Cybersecurity is a key requirement to enable railways to deploy and take advantage of the full extent of a connected, digital environment.
However, European infrastructure managers and railway undertakings face a complex regulatory system that requires a deep understanding of operational cybersecurity actions. In addition, European rail is undergoing a major transformation of its operations, systems and infrastructure due to digitalisation, mass transit and, increasing interconnections. Therefore, the implementation of cybersecurity requirements is fundamental for the digital enhancement and security of the sector.
ENISA, the EU Agency for Cybersecurity, and ERA, the EU Agency for Railways, have joined forces to organise a virtual Conference on Rail Cybersecurity.
Policy
The European Commission has proposed the revision of the Network Information Security Directive (NIS2) to strengthen the cybersecurity measures to be adopted by the Member States and applied, among others, by European railway undertakings (RU) and infrastructure managers (IM).
The European Commission’s Directorate-General for Mobility and Transport (DG MOVE) also encourages awareness-raising of railway stakeholders by promoting the use of its Land Transport Security platform. A cybersecurity toolkit was also developed and shared with the participants. Cybersecurity is now a major concern for National Safety Authorities. The French rail safety authority, l’établissement public de sécurité ferroviaire (the EPSF) compiled the related challenges in a white paper, jointly with the French IM and main RU, the French Cybersecurity Agency, ANSSI and ERA.
Standardisation & Certification
The Working Group 26 of the European Committee for Electrotechnical Standardisation (CENELEC) delivered the promising Technical Specification 50701 on cybersecurity for railways, now under review by the National Committees. A published version of the technical specification is expected before the summer. A voluntary reference to this standard will be made through the application guides developed by ERA. Railway stakeholders expect the technical specification to lay the foundations of a common risk analysis methodology. As demonstrated by the case study proposed by the Italian railway stakeholders, such methodology will link the security analysis to the safety case.
Research & Innovation
Shift2Rail the Joint Undertaking has gained maturity, and the Technical Demonstrator 2.11 on cybersecurity will soon demonstrate the applicability of their findings on specific projects such as Automatic Train Operation or Adaptable Communication Systems.
Technical interoperability standards for EU railway automation are being proposed for consideration in the railway regulatory framework, proposing "secure by design" shared railway services. In addition, The International Union of Railways (UIC), recently launched a Cyber Security Solution Platform, taking a pragmatic approach in building a solutions catalogue to risks and vulnerabilities identified by railway users.
Information Sharing & Cooperation
The European Railway-ISAC is attracting an increasing number of participants willing to share concerns or even vulnerabilities to trusted members and ensuring a collective response to the cybersecurity challenge. An open call by Shift2Rail, namely the 4SECURERAIL project, is developing a proposal for a European Computer Security Incident Response Team, allowing for identified threats to be instantly shared with targeted railway stakeholders.
With such developments, the railway industry, represented by the European Rail Industry Association (UNIFE), discussed how ready the sector is to increase the level of cybersecurity. UNIFE highlighted several priorities, such as: the approval and usage of the TS 50701, the need for adequate certification schemes on product level,the need for specific protection profiles on interface-specific devices and subsystems. This would allow for a more harmonized approach for manufacturers and system integrators.
Conclusions
The participants voted topics for future conferences and these include, among others:
- new technologies;
- cyber risk management for railways;
- cyber threat landscape;
- the update of Technical Specifications for Interoperability (TSI);
- cyber skills and training and cyber incident response.
Both agencies are paying very close attention to all the developments in the field of railway cybersecurity.
The success of the online conference of the last two days shows how railway stakeholders can benefit from close cooperation to ensure that both the cybersecurity and the railway regulatory framework are cross-fertilised.

When & How to Report Security Incidents - ENISA releases new guidelines

The European Union Agency for Cybersecurity (ENISA) releases new guidelines to facilitate the reporting of security incidents by national telecom security authorities.
The guidelines published help national telecom security authorities in the reporting of significant incidents to ENISA and the European Commission under the European Electronic Communications Code (EECC).
These new guidelines replace the previous ones issued by ENISA on incident reporting under Article 13a of the EU Telecoms Framework Directive. This revised version takes into account the scope and the provisions of the EECC and provides non-binding technical guidance to national authorities supervising security in the electronic communications sector.
The following three types of incident reporting are provided for under article 40 of the EECC:
1. National incident reporting from providers to national security authorities;
2. Ad-hoc incident reporting between national security authorities and ENISA;
3. Annual summary reporting from national security authorities to the European Commission and ENISA.
The new guidelines focus firstly on the ad-hoc incident reporting between the security authorities and ENISA and secondly on the annual summary reporting. More specifically, the document includes information on how and when security authorities can report security incidents to ENISA, to the European Commission and to other security authorities.
The information provided considers the services and incidents within the scope of the EECC - incidents affecting confidentiality, availability, integrity and authenticity of networks and services.  The thresholds needed for the annual reporting are also defined.  These thresholds are both of a quantitative and of a qualitative nature.
The quantitative elements considered include the number of users affected and the duration of the incident. Qualitative information was also used, such as the geographical coverage of the incident and the impact on the economy, on society and on users.
The new guidelines also include an incident report template and draw the distinction between national and annual reporting.
This report was drafted by ENISA in close cooperation with the ECASEC expert group of national telecom security authorities.

How science can help build a more resilient Europe

Enhanced data collection, more knowledge sharing and a long-term approach to risk will be key in strengthening Europe’s resilience against future disasters, according to a new book published today by the JRC.
Drawing lessons from the coronavirus pandemic and other crises, ‘Science for Disaster Risk Management 2020: acting today, protecting tomorrow’ explores how to protect lives, livelihoods, the environment and our rich cultural heritage from future disasters.
With input from over 300 experts, the book highlights the important role of science in preparing Europe to face the challenges that lie over the horizon.
Commissioner for Crisis Management, Janez Lenarčič, said: “As disasters defy borders the EU supports national action and promotes cross-border cooperation on disaster risk management – with the EU Civil Protection Mechanism being at the heart of this work. Using all data, science and lessons learnt available is vital to strengthen the collective safety and resilience against disasters in the EU and beyond”.
Commissioner for Innovation, Research, Culture, Education and Youth, Mariya Gabriel said: “The Joint Research Centre has long held key expertise in disaster risk management, spawning valuable tools like early warning systems and satellite mapping services, disaster risk studies and global risk models. The new book ‘Science for Disaster Risk Management 2020: acting today, protecting tomorrow’, is the latest of these tools: it shows how vital science is in helping us prepare for disasters, and how we can all work together to learn the lessons of the past and prepare better for the future.”
The aftermath of disasters can be learning opportunities, both in recovering quickly and dealing with the underlying drivers of disaster risk to avoid or mitigate similar events. This new book provides several examples and recommendations on how to grasp these opportunities to build a more resilient future.
Data is key to understanding the impact of disasters, and better managing them in the future
Events like the Fukushima accident in 2011 or the coronavirus pandemic show that, however improbable they may seem, disasters do occur and they can have a huge impact.
On a practical level, past disasters can serve to highlight weaknesses and trigger changes in the policy framework. For example, the forest fires of 2017 in Portugal caused a reassessment of fire management policies and led to new legislation to protect people and territory from forest fires.
To make the most of these opportunities, scientists need quality, comprehensive data and information gathered after a disaster to develop the right methodologies and tools. The book authors recommend developing a mechanism so that disaster loss data can be collected and used in this way.
A major challenge to collating and using data is that much of the damages and loss to cultural and environmental ecosystems caused by disasters can remain hidden when the value of these assets are not easy to define in economic terms.
It is hard to put a price on cultural artefacts or quantify what is lost when certain oral traditions and customs are no longer performed.
As a first step, the authors recommend compiling an inventory of the current state of cultural heritage assets in Europe, which can contribute to preserving that heritage in the face of disasters.
Taking a long-term view on disaster risk
The book also calls for a shift from a short-term, reactionary approach to disaster risk management, towards a long-term view that tackles the underlying drivers of risk - such as inequality, urbanisation, or climate change.
For example, the authors show how urban planning can play a key role in avoiding building in risk-prone areas like flood plains. Climate change also poses a challenge that requires a long-term response: sectors like European agriculture will need to deal with more frequent and extreme weather events in the coming years.
The book recommends actions such as supporting research groups from across different scientific disciplines to work together to find nature-based innovative solutions to societal challenges.
Sharing knowledge and working together to become more resilient
In today’s complex world and the many links between assets, sectors and governance levels, disasters often have an impact across countries and sections of society. It is therefore necessary that different stakeholders and groups share their data and knowledge to co-create effective strategies to reduce disaster risk.
One positive example of this came following the explosion of a fertiliser plant near Toulouse in 2001. It triggered a set of actions to engage local stakeholders in the co-design of strategies and measures to deal with technological risk.
By establishing local committees for information and consultation, people can now participate in the decision-making process and implementation of measures to prevent these risks, while also having an influence on land-use planning.
The book recommends education and training to raise awareness and build the capacity of individuals and communities to contribute to these efforts.
1 35 36 37 38 39 53