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A B S T R A C T   

The key components of an Electricity Critical Infrastructure (ECI) are the elements of system required to 
permanently provide services with a certain performance level. In the case of disruptive events effects on these 
elements, the key security factor is their robustness, which is an important determinant of element resilience. 
Current methods can already assess the static level of element resilience but are as yet unable to creating dy
namic models of resilience decrease due to disruptive events. In this context, dynamic security assessment is an 
important area for determining energy supply security. Based on this observation, the authors of the article 
created a method for Dynamic Robustness Modelling (DRM) which allows ECI element robustness dynamic 
modelling which can be clearly considered as a new concept of robust, secure and resilient of ECI. This stochastic 
method uses integral calculus and analysis of dynamic robustness in elements in the context of a predicted 
disruptive event scenario. The method quantifies the negative effect of predicted disruptive events and the 
subsequent decrease in the level of robustness due to this effect at the expected time of exposure. Practical use of 
the method is illustrated through a case study that models a decrease in the level of robustness of an electricity 
transformer station during an intentional man-made attack.   

1. Introduction 

Critical infrastructure (CI) is an irreplaceable source of vital services 
in large urban agglomerations. The Council of the European Union [1] 
defines critical infrastructure as “an asset, system or part thereof located in 
Member States which is essential for the maintenance of vital societal func
tions, health, safety, security, economic or social well-being of people, and the 
disruption or destruction of which would have a significant impact in a 
Member State as a result of the failure to maintain those functions”. A 
similar understanding of critical infrastructure is also given in the Na
tional Infrastructure Protection Plan of 2013 [2] by the U.S. Department 
of Homeland Security, which defines critical infrastructure as “systems 
and assets, whether physical or virtual, so vital to the United States that 
the incapacity or destruction of such systems and assets would have a debi
litating impact on security, national economic security, national public health 
or safety, or any combination of those matters”. 

The hierarchy of critical infrastructure consists of three levels that 
form the vertical structure of the system [3]: (1) system level, (2) sector 

level, and (3) elementary level. Critical infrastructure is classified into 
the system level according to functional specifics. The system level 
covers two areas, namely technical infrastructure (e.g. energy, trans
port) and socio-economic infrastructure (e.g. health, emergency ser
vices). The sectoral level consists of individual sectors (e.g. energy) and 
subsectors (e.g. electricity) of critical infrastructure. The elementary 
level consists of individual elements (e.g. power plants, transformers) 
that form the basic building blocks of the system hierarchy in those 
sectors. The overview of specific critical entities in the field of electricity 
is given in the Proposal for a Directive of the European Parliament and of 
the Council on the resilience of critical entities [4]. 

The most important technical sector of the critical infrastructure 
system, which is called uniquely critical on the basis of Presidential 
Policy Directive / PPD-21 [5] and Proposal for a Directive of the Euro
pean Parliament and of the Council on the resilience of critical entities 
[4], is energy. This unique criticality is especially evident in the elec
tricity sub-sector, on the supply of which all other critical infrastructure 
sectors are depend [6]. The importance of the energy sector is also 
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evident in critical infrastructure systems on other continents, such as 
Asia [7] or Australia [8]. For this reason, it is necessary to pay attention 
not only to the development of energy technologies, but also to energy 
security [9,10]. 

In the context of pervasive security issues, electricity critical infra
structure (ECI) elements are continuously exposed to the adverse effects 
of naturogenic and anthropogenic threats [11–13]. Ensuring a high level 
of robustness in these elements against the adverse effects of disruptive 
events is therefore essential. Robustness is an important determining 
factor in resilience, which in the context of critical infrastructure, 
resilience is defined as “the ability to reduce the magnitude and/or duration 
of disruptive events; the effectiveness of a resilient infrastructure or enterprise 
depends upon its ability to anticipate, absorb, adapt to, and/or rapidly 
recover from a potentially disruptive event” [14]. The European Commis
sion has recently proposed a new directive to enhance the resilience of 
critical infrastructure and create an all-hazards framework to support 
Member States in ensuring that critical entities are able to prevent, 
resist, absorb and recover from disruptive incidents, both natural and 
man-made [4]. Critical entities would be required to carry out risk as
sessments of their own, take appropriate technical and organisational 
measures in order to boost resilience, and report disruptive incidents to 
national authorities. 

At present, resilience in critical infrastructure elements can be 
measured statically [15]. This method provides information about the 
level of resilience in an element at the time before a disruptive event 
occurs. However, when a disruptive event affects a critical infrastructure 
element, the informative value of resilience is lost since its resilience 
level has already started declining [16]. Static resilience, therefore, does 
not let us analyse dynamic resilience at the time of a disruptive event 
[17] and predict the critical point of failure in critical infrastructure 
element performance. The starting point for this statement is the Critical 
Infrastructure Resilience Final Report and Recommendations [14] 
which works with the term Absorptive Capacity that is defined as “the 
ability of the system to endure and disruption without significant deviation 
from normal operating performance”. The absorption process is dynamic 
(takes place over time), as a result of which the absorption capacity of 
the element is gradually depleted. In contrast, at a time when there is no 
absorption capacity, the level of resilience is constant or static. Based on 
this, the terms static and dynamic resilience are used only in relation to 
the method of assessing resilience. 

Static resilience in a critical infrastructure system can be assessed 
using a number of specific methods. The most suitable of these methods 
are especially: Resilience Assessment in Electricity Critical Infrastruc
ture from the Point of View of Converged Security [18], A Performance- 
based Tabular Approach for Joint Systematic Improvement of Risk 
Control and Resilience Applied to Telecommunication Grid, Gas 
Network, and Ultrasound Localization System [19], Assessing and 
Strengthening Organisational Resilience – ASOR Method [20], Critical 
Infrastructure Elements Resilience Assessment – CIERA Method [21], 
Availability-based Engineering Resilience Metrics and Corresponding 
Evaluation Methodology [22], Resilience Capacities Assessment for 
Critical Infrastructure Disruption: The READ Framework [23], A 
Quantitative Method for Assessing Resilience of Interdependent In
frastructures [24], Guidelines for Critical Infrastructure Resilience 
Evaluation [25], Measuring Critical Infrastructure Resilience: Possible 
Indicators [26], and Resilience Measurement Index – RMI [27]. 

Some publications have investigated dynamic modelling in critical 
infrastructure systems in a different context. For example, Dynamic 
Functional Modelling of Vulnerability and Interoperability of Critical 
Infrastructures [28], Review on Modelling and Simulation of Interde
pendent Critical Infrastructure Systems [29], A System Dynamics 
Framework for Modelling Critical Infrastructure Resilience [30], Dy
namic Interdependency Models for Cybersecurity of Critical In
frastructures [31], Resilience Assessment for Interdependent Urban 
Infrastructure Systems Using Dynamic Network Flow Models [32], and 
A Functional Index Model for Dynamically Evaluating China’s Energy 

Security [33]. None of these studies, however, explored methods to 
predict the decline in resilience in critical infrastructure elements due to 
the effects of a disruptive event. 

Based on the above, no suitable method for dynamic modelling of 
resilience, respectively robustness, in critical infrastructure elements is 
currently described. The authors of the article therefore created Dy
namic Robustness Modelling (DRM) method, which is presented in more 
detail in the following sections. This stochastic method applies mathe
matical methods, specifically integral calculus, and analysis of dynamic 
robustness in elements in the context of a predicted disruptive event 
scenario. 

The ambition of the author’s team is to expand the perception and 
understanding of the basic philosophical level of resilience and include 
the aspect of time-changing attributes entering the process of assessing 
(modelling) robustness. Another aspect of novelty is to some extent 
the elementary level of robustness assessment resulting from the 
bottom-up approach, where robustness is tied to a specific element of 
critical infrastructure and is not limited by the perspective of cross- 
sectoral failure, within which it is fundamentally impossible to distin
guish between static and dynamic resilience. 

The mentioned statement is primarily reflected by the orientation of 
the case study to the application of the DRM method on the transformer 
station, which pragmatically expresses and can be considered as an 
elementary approach and level of assessment. However, the DRM 
method presented in the next part of the text can be used as a starting 
point and basis for higher levels of assessment, and thus for critical 
infrastructure subsector or sector robustness assessment, assuming the 
use of another mathematical superstructure. This fact can therefore be 
accepted as a bottom-up approach, as evidenced, inter alia, by the 
document Analysis of Critical Infrastructure Dependencies and In
terdependencies [34], which deals with the definition of Bottom-up and 
Top-down Approaches. For better comprehensibility, the application of 
the DRM method was demonstrated only at the elementary level of a 
selected critical infrastructure element. 

2. Methods of modeling dynamic systems 

Dynamic systems are the opposite of static systems. The state of a 
dynamic system evolves over time through input signals, external 
disruption and natural developments [35]. Dynamic modelling of these 
systems is used to describe and predict the interactions over time of 
these systems with several factors of a given phenomenon [36]. These 
dynamic models can be either deterministic or stochastic. A determin
istic model is one in which the values for the dependent variables of the 
system are completely determined by the parameters of the model. In 
contrast, stochastic, or probabilistic, models introduce randomness in 
such a way that the outcomes of the model can be viewed as probability 
distributions rather than unique values [37]. 

Currently, graphical-analytical methods (e.g. network analysis), 
statistical methods (e.g. Bayesian kernel, statistical hypothesis testing) 
and mathematical methods (e.g. topology, integral calculus, the Euler’s 
method, and pairwise comparison) are used to model dynamic systems. 
The section below describes these methods and the advantages and 
disadvantages of their use in dynamic robustness modelling of elements 
in electricity critical infrastructure. 

Graphical-analytical methods are a combination of graphical and 
analytical methods. Graphical methods are especially suitable for illus
trating and presenting typical statistical data through the use of graphs 
[38]. Analytical methods examine selected facts and are therefore 
limited in time and task. Specifically, network analysis allows detailed 
relationships between the components of an issue to be resolved [39]. 
This method can be used to determine the relationship between a dis
ruptive event and the robustness in a critical infrastructure element. 

For example, Murray et al. [40] used network analysis to create an 
optimization method for use with telecommunications flows. Using 
network analysis, Eusgeld et al. [41] analysed critical infrastructure 
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vulnerabilities and assessed the capture potential and detailed dynamics 
of scenarios that affect the most vulnerable parts of critical infrastruc
ture. Ongkowijoyo and Doloi [42] introduced a new method called 
Fuzzy Critical Risk Analysis (FCRA), which integrates an existing risk 
analysis of the impact of the spread of risk with a new analysis. The 
disadvantage of graphical-analytical methods is their complexity, which 
results from a detailed analysis of entire networks and the expressions of 
interdependence between individual elements. 

Bayesian statistics is the most frequently used method applied to 
critical infrastructure [43]. This method is typical for modelling pa
rameters that are mostly unknown values and only estimated from 
measured data. This area of statistics is based on predicting, sorting and 
managing dynamic systems with a degree of uncertainty. The estimate is 
calculated using Bayes’ theorem [44]. 

One example of the use of Bayesian statistics is given in an article 
which explored the issue of optimizing and managing resilience in 
critical infrastructure [45]. Similarly, Baroud and Barker [46] expanded 
the model with a data analysis and created a Bayesian kernel model for 
modelling the level of importance of resilience-based network compo
nents. Since quantifying resilience is a vital part of infrastructure risk 
analysis, Baroud and Barker [47] applied the Beta Bayesian kernel 
model to estimate resilience metrics used to analyse the recovery process 
of disrupted critical infrastructure systems. In her dissertation, Baroud 
[48] developed a new Bayesian kernel model to predict the frequency of 
failure. This model was subsequently applied to modelling important 
measures based on the resilience of the critical infrastructure system. 

Statistical methods applied to critical infrastructure also include 
interdependence and regression or correlation according to the type of 
dependence, which may be unilateral or mutual [49]. Mackenzie and 
Barker [50] discuss and give an example of regression in quantifying 
critical infrastructure resilience using a dynamic I/O model to map 
Oklahoma’s production losses due to a power outage. Statistical 
methods primarily aim to obtain statistical data that are important in 
dynamic modelling of systems, but they do not allow these systems to be 
defined. 

Graphical-analytical and statistical methods also do not reveal the 
correlation between a disruptive event and resilience in a critical 
infrastructure element as they develop over time. Mathematics, which is 
a science of structure, order and relationship, is suitable for solving this 
problem. Mathematical methods apply logical reasoning and quantita
tive calculations and can express a degree of abstraction [51]. Studying 
this group of methods is therefore appropriate. Selecting the most suit
able method for calculating hazard levels and determining the level of 
robustness in a critical infrastructure element is imperative. Given the 
above facts, mathematical elements and some form of abstraction are 
necessary in order to create the individual steps of the dynamic 
modelling process. 

From mathematical methods, four methods were studied in more 
detail, which seem to be suitable for dynamic modelling of electric 
power critical infrastructure element robustness. Specifically, these are 
Topology [52], Integral calculus [53], Euler’s method [54] and Pairwise 
comparison [55]. The essence of choosing a suitable method is the 
requirement to obtain a numerical value from three or more variables 
with respect to their development over time. Based on this requirement, 
it is not possible to use the pairwise comparison method, because it is 
based on the creation of variants and subjective ordering of criteria for 
the selection of the most suitable variant. Topology is a general inter
pretation for defining the concept of space and deals with shapes and 
spaces. The disadvantage of topology is that it does not take distances 
into account. In connection with the solved problem, it is specifically the 
duration of the adverse event with respect to the development over time. 
Also, Euler’s method works with only two variables and is based on the 
equation for changing position and velocity. This method is only used to 
approximate the function using differential equations. 

The last potentially suitable method is the integral calculus, which is 
used to find areas, volumes and lengths of curves. This method allows 

the integration of multiple variable factors in a specific calculation. 
When the hazard level of a disruptive event is calculated, an integral can 
incorporate the duration, intensity and progress of the disruptive event 
simultaneously. This step represents a relevant starting point for dy
namic modelling robustness of element in electricity critical 
infrastructure. 

3. Factors in dynamic robustness modelling of electricity critical 
infrastructure elements 

After applying the above definition of modelling a dynamic system in 
critical infrastructure [36], we can conclude that the basic components 
of dynamic modelling of robustness in electricity critical infrastructure 
elements are the level of static resilience of a CI element, the character of 
a disruptive event (i.e. type and forecast scenario of its development) 
and time. 

It is important to consider all the factors that positively and nega
tively affect robustness in electricity critical infrastructure elements for 
dynamic modelling. In this context, two factors determine the level of 
robustness in electricity critical infrastructure elements: (1) factors 
determining robustness (i.e. robustness components) and (2) factors 
adversely affecting robustness (i.e. components constituting the hazards 
of a disruptive event). 

3.1. Factors determining robustness in electricity critical infrastructure 
elements 

The first group consists of factors that determine robustness in 
electricity critical infrastructure elements. The document Critical 
Infrastructure Resilience Final Report and Recommendations [14] de
fines robustness as one of the three basic components determining the 
resilience of critical infrastructure elements. Robustness is the ability of 
an element to absorb the effects of a disruptive event that is already in 
progress. These effects can be absorbed through early detection and 
adequate response, conceivably by activating the redundant capacity of 
the element. 

Other determinants of resilience are recoverability and adaptability 
[21]. Recoverability is the ability of an element to restore its activity to 
its original (required) level of service once the disruptive event has 
ended. It should be noted that recoverability especially is limited by the 
availability of financial, material and human resources. Adaptability is 
the ability of a critical infrastructure entity (i.e. an organization) to 
prepare an element for the recurrence of a disruptive event. Adaptability 
represents the dynamic (long-term active) ability of an organization to 
adapt to a changing situation. 

The term resilience and the structures and functions of the above- 
mentioned resilience factors were first defined by Holling [56] in 
connection with resistance and stabilization in ecological systems (later 
also socio-ecological systems). Interestingly, the term resistance itself is 
not included in the National Infrastructure Advisory Council’s definition 
[14]. The document only describes robustness, recoverability, and 
adaptability, which are repressive factors (i.e. performing their function 
only at the time of a disruptive event). By contrast, resistance can be 
understood as the ability of an element to prevent the occurrence of a 
disruptive event, which is an important preventive factor [57]. Ac
cording to this, viewing resistance as a fourth and very important 
component of resilience in critical infrastructure elements is appro
priate. Resilience is determined mainly by the preparedness and phys
ical resistance of an element to a crisis. However, in the context of this 
article, resistance and its determinants will continue to be seen as part of 
robustness. 

Fig. 1 shows a graphical presentation of the robustness of critical 
infrastructure element in the context of a disruptive event’s effect on the 
performance of this element. 

When an element is subject to the effects of a disruptive event, the 
absorption capacity of the element is spread over two phases [58]. In the 
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first phase, the system can absorb the effect of a disruptive event without 
involving redundant capacity, up to the element’s ability to fully absorb 
the effect of the disruptive event (point A on Fig. 1). In the second phase 
of absorption, the redundant capacity available to the element is 
engaged. As a result, robustness begins to decrease, however the element 
can still provide the full power required. At this point, there is still room 
to detect a disruptive event and respond to its effects. If an element’s 
redundant capacity is exhausted, such as its ability to absorb the effect of 
a disruptive event (point B on Fig. 1), only then do the adverse effects of 
the event begin to manifest as a decline in functionality. The nature of 
the decline is determined by the element’s ability to defend itself against 
the effects of the event. If this ability exists, the reduction in power 
provided by the element may be gradual, but if the intensity of the 
disruptive event overcomes these abilities, the reduction in power is 
usually steep or even instantaneous. 

Based on the above, it can be stated that the robustness of the ele
ments of the electricity critical infrastructure is determined by the 
following factors [58]:  

- Crisis preparedness (set of measures to increase the preparedness of a 
critical infrastructure element for disruptive events);  

- Detection capability (probability and / or time of disruptive event 
detection);  

- Responsiveness (probability and / or time of intervention leading to 
the elimination of the causes of the disruptive event or the minimi
zation of its consequences);  

- Redundancy (ability to immediately substitute the power of the 
disturbed part of the element or strengthen its capacity); 

- Physical resistance (structural characteristics of buildings or tech
nologies used and implemented security measures, i.e. a set of 
organizational and regime measures and technical means to increase 
the security of a critical infrastructure element against disruptive 
events). 

At the same time, however, it is necessary to realize that robustness is 
one of the three determinants of the electricity critical infrastructure 
elements resilience (the other two are recoverability and adaptability) 
[14,59,60]. For this reason, the above-mentioned factors determining 
the elements robustness are at the same time partial factors determining 

the elements resilience, but only in the phase of prevention and imme
diate reaction, i.e. at the time of the adverse event. 

3.2. Factors determining the hazards of a disruptive event 

The factors that determine robustness in an element are counter
balanced by the factors that disrupt this robustness. In this case, these 
are the components that constitute the hazards of a disruptive event. 
These factors are defined as the escalation, exposure, de-escalation, and 
intensity of the disruptive event [16,61,62]. Escalation is the initial 
phase of a disruptive event and is determined by the escalation function 
and the level of intensity achieved in the final part of the phase. Expo
sure is the duration of a disruptive event delimited by the escalation and 
de-escalation phases. This stage can be divided into any number of sub- 
stages depending on the variation in intensity level of the disruptive 
event. This assertion is based on Bayesian statistics, which uses proba
bility in relation to unknown past factors and estimation of resistances 
[47]. De-escalation is the final phase of a disruptive event and is 
determined by the de-escalation function and the initial intensity level in 
the initial phase. The final variable determining hazard level in a dis
ruptive event is intensity. The intensity of a disruptive event is a com
mon factor during escalation, exposure and de-escalation. This factor 
describes the degree of a disruptive event’s destructiveness and its 
ability to adversely effect on a critical infrastructure element. The in
tensity of a disruptive event may vary considerably over the duration of 
its effect. 

A graph of the correlation between factors determining the hazard of 
an adverse effect is shown in Fig. 2. 

The default factor that determines the effect of a disruptive event on 
robustness in a critical infrastructure element is escalation. The level of 
escalation of a disruptive event is determined by the escalation function 
and the level of its intensity at time t1 (Fig. 2). The different types of 
escalation functions can be classified into five levels according to the 
effect on the critical infrastructure element. A value of 1 represents the 
escalation function with the least effect. A value of 5 represents the 
greatest effect. Examples of measurable items that determine the type of 
escalation function of a disruptive event are presented in Fig. 3. 

Power escalation is the escalation of the disruptive event with the 
lowest impact. This is due to the fact that the increase in the intensity of 

Fig. 1. Expressing the robustness of a critical infrastructure element in the context of an disruptive event (modified according to [58]).  
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this disruptive event is gradual and allows for early detection and sub
sequent adoption of security measures. In contrast, inverse power 
escalation represents a very rapid (almost instantaneous) increase in the 
intensity of a disruptive event. As a result, it is not possible to detect this 
event in time and its effects can be very high. Examples of selected 
disruptive events and associated escalation function are presented in 
Table 1. 

The second factor that determines the effect of a disruptive event on 
critical infrastructure element robustness is exposure. Exposure to the 
disruptive event can be divided into any number of sub-phases accord
ing to the intensity of the disruptive event (Fig. 2). The level of exposure 
in each sub-phase is determined by the intensity of the event. 

The third factor that determines the effect of a disruptive event on 
robustness in a critical infrastructure element de-escalation of the event. 
The level of de-escalation is determined by the de-escalation function 

and the initial level of its intensity at time t2 (Fig. 2). The different types 
of de-escalation functions can be classified into five levels according to 
the effect on the critical infrastructure element. A value of 1 represents 
the de-escalation function with the least effect. A value of 5 represents 
the greatest effect. Examples of measurable items that determine the 
type of de-escalation function of a disruptive event are presented in 
Fig. 4. 

As in the case of escalation, in this case as well, the power de- 
escalation represents a gradual decrease in the intensity of the disrup
tive event, which enables the timely commencement of liquidation work 
and the recovery process. In contrast, inverse power de-escalation rep
resents a very rapid (almost instantaneous) decrease in the intensity of a 
disruptive event. As a result, it is not possible to start the immediate 
restoration of the element, which increases the impact caused. Examples 
of the type of de-escalation function of selected disruptive events is 
presented in Table 2. 

The final factor that determines the effect of a disruptive event on 
critical infrastructure element robustness is the event’s intensity. The 
level of intensity is determined by the degree of the event’s destruc
tiveness and ability to adversely effect on the element. The intensity of 
all types of disruptive events can be classified into five levels according 
to these criteria. A value of 1 represents the escalation function with the 
least effect. A value of 5 represents the greatest effect. An example of the 
classification of measurable items that determine the intensity of a se
lected disruptive event is presented in Table 3. 

The above example shows that measurable items are defined only for 
those disruptive events which have the potential to disrupt the robust
ness of critical infrastructure elements. Winds below 62 km/h on the 

Fig. 2. Factors determining the hazards of a disruptive event.  

Fig. 3. Measurable items determining the type of escalation function of a disruptive event.  

Table 1 
Examples of disruptive events for individual escalation functions.  

Disruptive event Type of escalation 
function 

Physical attack on any critical infrastructure element Inverted exponential 
escalation 

DDoS attack on SCADA systems in electricity distribution 
network dispatching systems 

Inverted quadratic 
escalation 

Escalation of traffic intensity on a highway Linear escalation 
Over-pressurization in a gas pipeline Quadratic escalation 
Impact of wind or storms on electricity transmission or 

distribution systems 
Exponential escalation  
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Beaufort scale for extreme wind effects, therefore, were not included in 
the measurable items [63]. 

Finally, we should highlight that the point evaluation scale used to 
assess the levels of escalation, de-escalation and intensity of a disruptive 
event is based on Linear Aggregation [64]. In this principle, the differ
ence between individual point values is directly proportional. In prac
tice, an increase from 1 to 2, for example, is the same as an increase from 
4 to 5. The increase is thus 20%. 

4. Method for dynamic robustness modelling of electricity 
critical infrastructure elements 

The Dynamic Robustness Modelling (DRM) method proposed in the 
article was created by the authors in order to address the need for dy
namic modelling of robustness in electricity critical infrastructure ele
ments. This stochastic method uses integral calculus and analysis of 
dynamic robustness in elements in the context of a predicted disruptive 
event scenario. This method quantifies the adverse effect of predicted 
disruptive events and the subsequent effect of this impact on the 
decrease in robustness at the expected time of exposure. The method can 
predict critical point of failure in performance in electricity critical 
infrastructure elements and identify weaknesses that contribute to 
insufficient protection and subsequent failure of performance. 

4.1. Dynamic robustness modelling framework 

The starting point for the DRM method was defining a framework for 
dynamic robustness modelling (Fig. 5). This framework defines the areas 

necessary for the modelling process and subsequent analysis. These 
areas are: (1) assessed electricity critical infrastructure elements, (2) 
assessed disruptive events, (3) determining factors, and (4) methodol
ogy. All the above areas represent an important and necessary part of 
dynamic robustness modelling of critical infrastructure elements. 

In order to apply DRM method effectively, the electricity critical 
infrastructure elements that the method is suitable for must be clearly 
defined. In the context of the problem, these are all technical elements of 
generation, transmission and distribution of electricity critical infra
structure, such as generation with a total installed electrical capacity of 
at least 500 MW, transmission system lines of at least 110 kV, trans
former stations and technical dispatching. 

Similarly, the disruptive events that dynamic robustness is modelled 
against should also be defined. The authors therefore based their se
lection on the typology of PERIL events [65] and the data available for 
these large-scale events. From these events, the authors selected and 
modified groups of events where the threat primarily affected infra
structure. According to this classification, disruptive events of a 
naturogenic (geological and meteorological), technogenic (process- 
technological and cascading) and anthropogenic character (personnel, 
cybernetic and physical) were identified. 

Another essential area of the dynamic robustness modelling frame
work is the factors that contribute to the robustness of electricity critical 
infrastructure elements. Specifically, there are two types of factors [58]: 
(1) factors determining and limiting robustness (i.e. components deter
mining a robustness) and (2) factors affecting robustness (i.e. compo
nents determining a disruptive event). The individual factors have been 
described in detail in the previous section of the article. 

The final, important area in correctly modelling dynamic robustness 
is a suitably selected methodology. In the context of the proposed dy
namic robustness modelling procedure (see below), the methodology is 
divided into three closely related parts. The first part defines the sce
nario of disruptive events. Specific methods such as Event Tree Analysis 
– ETA [66] and Fault Tree Analysis – FTA [67] can be applied in this 
area. The second part of the methodology analyses the static robustness 
of a critical infrastructure element using one of the following three 
methods: (1) Critical Infrastructure Elements Resilience Assessment – 
CIERA [21], (2) Resilience Measurement Index – RMI [27], and (3) 
Guidelines for Critical Infrastructure Resilience Evaluation [25]. How
ever, the authors recommend the CIERA method which best suits the 
conditions of integration into the DRM method with the structure of the 
classification of variables and the method of point assessment. For other 

Fig. 4. Measurable items determining the type of de-escalation function of a disruptive event.  

Table 2 
Examples of disruptive events for individual de-escalation functions.  

Disruptive event Type of escalation 
function 

Physical attack on any critical infrastructure element Inverted exponential de- 
escalation 

DDoS attack on SCADA systems in electricity 
distribution network dispatching systems 

Inverted quadratic de- 
escalation 

Effects of flooding on an electricity distribution network Linear de-escalation 
Effects on transportation infrastructure due to rapid 

landslides or other shifts in land 
Quadratic de-escalation 

Effects on electrical energy transmission or distribution 
networks due to earthquake 

Exponential de- 
escalation  

Table 3 
Example of classification of measurable items that determine the intensity of selected disruptive events.  

Threat category Threat group Disruptive event Measurable items 

Naturogenic 
threats 

Meteorological 
threats 

Extreme wind 
events 

5: Hurricane (over 118 km/h, destructive effects) 
4: Powerful windstorm (103–117 km/h, very rare, causing severe damage to housing, forests) 
3: Strong wind (89–102 km/h, rarely occurs inland, blows over trees, causes more extensive damage 
2: Windstorm (75–88 km/h, wind causes minor damage to structures (knocks over chimneys, tears off roof 
tiles) 
1: Storm winds (62–74 km/h, wind breaks branches, walking against the wind is almost impossible)  
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methods, the resulting values would have to be converted to the corre
sponding point scale suitable for the DRM method. The final part of the 
methodology applies dynamic modelling. In this context, relevant sta
tistical methods (i.e. Bayes’ kernel, statistical hypothesis testing), 
mathematical methods (i.e. topology, integral calculus, Euler method 
and pairwise comparison) and graphical-analytical methods (i.e. 
network analysis) are applied. 

4.2. Dynamic robustness modelling procedure 

Based on the initial conditions and conditions established by the 
framework, a procedure for dynamic robustness modelling in electricity 
critical infrastructure elements can be defined. This procedure includes 
seven interconnected steps (Fig. 6), which provide assessors with a clear 
guide in determining the robustness of an element under the effects of a 

disruptive event. The results of the analysis indicate the dynamically 
changing robustness level of the evaluated element and allow an es
timation of the element’s ability to resist the effect of a disruptive event 
and whether its performance will fail (i.e. predict the critical point of 
failure). 

Step 1: Selecting the electricity critical infrastructure element 
and a disruptive event 

The first step in the proposed procedure is selecting a specific elec
tricity critical infrastructure element which will have its dynamic 
robustness modelled. This selection is limited to technical elements of 
production, transmission and distribution of electricity critical infra
structure for which the level of static robustness can be determined (see 
dynamic robustness modelling framework). A specific disruptive event 
that the selected element will be evaluated against is then selected. For 
this event, a scenario of the effect on the selected electricity critical 

Fig. 5. Framework for dynamic robustness modelling of electricity critical infrastructure elements.  

Fig. 6. Procedure for dynamic robustness modelling of electricity critical infrastructure elements.  
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infrastructure element is defined. Due to the need to unify the meth
odology for calculating static robustness, the disruptive event should be 
categorized according to the CIERA method [21] into one of the 
following groups of threats: geological, meteorological, process tech
nology, cascading, personnel, cyber and physical. 

Step 2: Analysing the selected element of electricity critical 
infrastructure 

The second step is analysing the element, classifying the element 
according to the electricity critical infrastructure, describing the ele
ment’s structural and performance parameters, and identifying the data 
concerning the factors which determine the robustness of the element. 
The classification of an element results from its performance parame
ters, on the basis of which it can be assessed whether it meets any of the 
relevant sectoral criteria. Performance parameters specify the techno
logical structure of the element and describe the performance of key 
technologies. By contrast, structural parameters specify the topological 
structure of the element, i.e. whether it is a point, linear, or surface 
element. The final part of the second step identifies the data concerning 
factors which determine level of element robustness. Analysis of the 
selected element should be performed in accordance with the CIERA 
method [21]. 

Step 3: Defining the scenario of a disruptive event 
The third step is defining the scenario of a disruptive event and its 

development over time. This is a necessary starting point for dynamic 
robustness modelling. The course of a disruptive event is classified ac
cording to three key phases: escalation, exposure and de-escalation. The 
first phase defines the course of the escalation function and its intensity 
at time t1. This is followed by the exposure phase, where the assessor 
must determine the course of the disruptive event until it de-escalates. 
During the exposure phase, the intensity of the disruptive event may 
increase, decrease or remain constant. If the intensity during this stage is 
variable, the interval determining the duration of the exposure phase 
may be divided into several parts. This assertion is based on Bayesian 
statistics, which uses probability in relation to unknown past factors and 
estimation of resistances [47]. The final phase defines the course of the 
de-escalation function and its intensity at time t2. Since each phase 
continues for a certain amount of time, its duration must also be defined. 
The ETA [66] or FTA [67] methods are suitable for defining scenarios. 

Step 4: Determining the hazard level of a disruptive event 
Once the scenario of a predicted disruptive event has been defined, 

the level of hazard can be determined. To calculate this level, the type of 
the specific function for each phase and the intensity of the disruptive 
event at each point in time must be known, i.e. t0 to t3 (Fig. 2). The level 
of hazard of a disruptive event can then be determined using integral 
calculus [53]. This calculation consists of two steps: (a) selecting the 
functions that determine the scenario of a disruptive event, and (b) 
including the intensity of the disruptive event in the calculation. 

(a) Selecting the functions that determine the scenario of a 
disruptive event 

H(t) is the mathematical notation for the calculation describing the 
overall hazard of a disruptive event. In general, if the continuous func
tions f(t) which determine the individual phases of the disruptive event 
(i.e. escalation, exposure, de-escalation) at time t for t ∈ 〈t0; tn〉 are 
known, then the overall hazard level of the disruptive event for a given 
time interval can be calculated according to the integral (Eq. (1)): 

H(t) =
∫ tn

t0
f (t)dt (1)  

where H(t) = hazard level of disruptive event over time t; f(t) =
continuous function determining the course of the disruptive event over 
time t. 

This interval can be divided into several parts and used to calculate 
the hazard levels of individual phases as a sum of partial integrals, as 
follows (Eq. (2)): 

H(t) =
∫ t1

t0
fEs(t)dt+

∫ t2

t1
fEx(t)dt+

∫ t3

t2
fDe(t)dt (2)  

where H(t) = hazard level of disruptive event over time t; fEs(t) =
continuous function determining the course of escalation; fEx(t) =
continuous function determining the course of exposure; fDe(t) =
continuous function determining the course of de-escalation. 

Time t is considered a generic unit of time, regardless of whether a 
minute, hour, day, week, month, or year. For the purposes of the 
calculation, time is divided equally according to the duration of the 
given phase. The sum of these proportions must equal 1. For example, if 
the escalation phase continues for three units of time, then a proportion 
of 0.3 applies. For an exposure period of four units of time, 0.4 applies. 
In this case, the remaining duration of the de-escalation phase is 0.3. 

The first part of Eq. (2) represents the escalation phase (Es). A spe
cific function can be used in this equation as a measurable item ac
cording to the progress of a disruptive event over the time interval 
〈t0; t1〉. Specific types of functions fEs(t)x interpreted in Fig. 3 are shown 
in Fig. 7 together with their mathematical notations. 

The second part of Eq. (2) is used to calculate the exposure (Ex) to a 
disruptive event in the time interval 〈t1; t2〉. In this phase, the effect of a 
disruptive event could suggest that the development of a function may 
be constant but also unstable. To calculate a constant function, Eq. (3) is 
applied. However, if the function does not have a constant character at 
this stage, the equations for escalation (Fig. 3) or de-escalation (Fig. 4) 
can be used for the calculation. To simplify the calculation of a disrup
tive event’s hazard level, the course of the exposure phase can be 
divided into any number of time intervals. 

f (t) =
∫ t2

t1
cdt = c

∫ t2

t1
1dt (3)  

where f(t) = continuous function determining the course of the 
disruptive event over time t; c = constant. 

The third part of Eq. (2) for calculating the total intensity of a 
disruptive event is the de-escalation (De) phase in the time interval 
〈t2; t3〉. Specific types of functions fDe(t)x interpreted in Fig. 4 are shown 
in Fig. 8 together with their mathematical notations. 

When the functions that determine the selected disruptive event 
scenario are selected, the intensity of the disruptive event can then be 
considered. Intensity will vary from phase to phase (Fig. 2). Intensity 
does not always therefore reach 100%, as illustrated in Figs. 3 and 4. 

(b) Applying intensity in the calculation of hazards for a disruptive 
event 

Determining the intensity level is based on the predefined values of 
measurable items in a disruptive event (e.g. extreme wind phenomena in 
Table 3). However, to determine the hazard level of a disruptive event, 
these point values must be converted into percentages with linearly 
increasing character. A point value of 1 therefore represents 20% of the 
intensity of a disruptive event’s effect on a critical infrastructure 
element. Similarly, a point value of 2, 3, 4, and 5 represent 40%, 60%, 
80%, and 100% intensity, respectively. 

As a disruptive event progresses, its intensity will vary. In the esca
lation phase, intensity increases, being zero at t0 and reaching a level in 
the interval (0;1〉 at t1, where 0 represents 0% of the disruptive event’s 
effect on the selected element and 1 represents 100%. In the exposure 
phase, the level of the disruptive event may remain constant, decrease or 
increase. If the intensity varies (i.e. achieves more than one function), 
dividing the exposure phase into any number of time intervals is rec
ommended. The de-escalation phase has a decreasing character over 
time, where time t2 is the same level as at the end of the escalation phase 
at time t3, and time t3 is again at zero intensity. 

The intensity of the disruptive event during the continuous function 
may thus reach different levels, which are always related to specific 
times (i.e. t0 to tn) that bound the evaluated intervals. Thus, at the 
beginning of the action (i.e. at time t0), the intensity of the disruptive 
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event I0 is at 0%. Similarly, at the end of the effect (i.e. at time t3), 
the intensity of the disruptive event I3 is again 0%. At times t1 and t2, 
intensities I1 and I2 may reach any level in the interval (0; 1〉. According 
to this, general equations for calculating the increasing, constant, and 
decreasing intensity levels can be defined (Eqs. (4)–(6)). 

The escalation phase with increasing character in a disruptive event 
is calculated according to Eq. (4): 

HEs(t) =
∫ t1

t0

∫ I1 − I0
(t1 − t0)

x *fEs(t)

0
dIdt (4) 

The exposure phase with a constant character in a disruptive event 
(I1 = I2) is calculated according to Eq. (5): 

HEx(t) =
∫ t2

t1
I1dt (5) 

The de-escalation phase with a decreasing character in a disruptive 
event is calculated according to Eq. (6): 

HDe(t) =
∫ t3

t2

∫ I3 − I2
(t3 − t2)

x *fDe(t)

0
dIdt (6)  

where HEs(t) = hazard level of disruptive event in the escalation phase (i. 
e. t0 to t1); HEx(t) = hazard level of disruptive event in the exposure 
phase (i.e. t1 to t2); HDe(t) = hazard level of disruptive event in the de- 
escalation phase (i.e. t2 to t3); <tn-1;tn> = interval bounding the time 
period of the disruptive event phase; <In-1;In> = interval bounding the 
intensity of the disruptive event phase; x  = exponent depending on the 
type of function f(t). 

To calculate the escalation phase with increasing character in the 
function that determines the disruptive event according to the type of 
function in Eq. (4), the corresponding equations given in Fig. 7 are 
applied. The time variables t0, t1 and the intensity level I1 of the 
disruptive event, based on Table 3, must also be input. The de–escalation 
phase is calculated in the same manner. To calculate the decreasing 
character of the function, the equations from Fig. 8 are applied to Eq. (6) 

The exposure phase can apply three calculations according to 
whether intensity is constant (Eq. (5)) or variable. If the course of the 
function in this phase is variable, then Eq. (4) is applied for an increasing 
character (In, In+m) and Eq. (6) is applied for a decreasing character (In, 
In-m), to which a range between zero intensity I0 and the lower boundary 
of the assessed intensity In in the given time interval must be added (Eq. 
(7)): 
∫ tn+1

tn

∫ In

I0

1dIdt (7) 

The hazard level of the disruptive event (Eqs. (4)–(6)) in the relevant 
equations is determined by finding the values of time and level of in
tensity, together with the function determining the course of the given 
disruptive effect over time, and the level of intensity, together with the 
function determining the course of the given disruptive effect. 

Step 5: Determining the level of static robustness of the selected 
element in the electricity critical infrastructure 

After analysing the selected element, the level of its static robustness 
can be determined. For this step, the CIERA method [21] is best applied. 
The CIERA method assesses not only the comprehensive level of resil
ience in the element but also the level of robustness in its individual 
components, i.e. robustness, recoverability and adaptability. Using the 
CIERA method, resistance is assessed in terms of robustness, represented 
by two variables, namely the element’s crisis preparedness and its 
physical resistance. At this stage of the procedure, each measurable item 
is scored and then the percentage level of static robustness in the elec
tricity critical infrastructure element is calculated. 

Step 6: Assessing dynamic robustness of the selected element in 
the electricity critical infrastructure 

Once the disruptive event hazard and static robustness level of the 
selected critical infrastructure element have been determined, the final 
step is assessing the dynamic robustness. In this step, the assessor studies 
the course of decrease in the element’s robustness according to the effect 
of the disruptive event (i.e. its function and intensity). In general, 
escalation increases intensity over time, and the progress may be rapid 
or gradual. Robustness decreases as a result of an increase in the 

Fig. 7. Prescribed functions for calculating individual types of escalation of disruptive events.  

Fig. 8. Prescribed functions for calculating individual types of de-escalation of disruptive events.  
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disruptive event’s intensity. The exposure phase can take several forms 
and remain constant, increase or decrease. The rate of decrease in the 
element’s robustness may also vary. In the de-escalation phase, the 
decrease in robustness is again more gradual until the disruptive event’s 
intensity reaches zero, when the robustness level stagnates and can then 
begin to recover (i.e. in the element recovery phase) and strengthen (i.e. 
in the element adaptability phase). 

Dynamic robustness can be expressed with a curve that links the 
levels of individual values of static robustness R0 through Rn over time. 
Its function is derived from the disruptive event function. For example, 
an exponential increase in the intensity of a disruptive event that is 
initially slow and subsequently steep will result in an exponential 
decrease in the robustness of the element, which is also initially slow and 
subsequently steep. 

The values of the new level of robustness Rn+1 are calculated from 
one phase ph (i.e. escalation, exposure and de–escalation) of the 
disruptive event using direct proportions and percentages according to 
the development over time. Therefore, to calculate a new level of 
robustness Rn+1, the initial value of robustness Rn must be known. This 
value has a certain level, which is always considered 100% level at a 
given stage. Consequently, the result calculated in step 5 should be 
applied, namely the determined hazard level of the disruptive event 
Hph(t), which represents a reduction of 100% of the robustness level in 
this phase due to the disruptive event (100-Hph(t)). The robustness level 
at the end of each phase is calculated according to Eq. (8): 

Rn+1 = Rn •

(
100 − Hph(t)

)

100
(8) 

From the robustness level calculations of each phase of the disruptive 
event, the assessor can derive a suitable number of values that follow a 
decreasing sequence. The values obtained from dynamic robustness 
modelling can then be summarized (Table 4). 

The resulting robustness values can then be expressed on a curve that 
simply shows the level of expected development of dynamic robustness 
in the disruptive event. 

In this context, it should be noted that the DRM method works with 
time t only as a quantity that to some extent considers the ratio and 
relationship between the various phases of the adverse event, which is 
acceptable for predicting the critical point of element failure. Thus, this 
quantity does not consider the actual duration of the adverse event and 
therefore cannot be used as an indicator for the level of static robustness 
assessment, in particular the detection and response capabilities. In such 
a case, it is more appropriate to use specific methods for mathematical 
modelling of the critical infrastructure elements physical protection 
system (e.g. Kampova et al. [68] and Zou et al. [69]). For example, in the 
case of an element against the effects of physical threats robustness 
assessment, these methods work with the so-called breakthrough resis
tance of mechanical barrier systems and the range time of the inter
vention unit with a relevant degree of standard deviation. 

Step 7: Predicting critical point of failure in performance of 

electricity critical infrastructure element 
The final step in the process of dynamic modelling of robustness in 

electricity critical infrastructure element is predicting the critical point 
of failure in in performance of element. This condition occurs when the 
disruptive event hazard reaches a level greater than the robustness level 
of the element at a given time, assuming an increasing disruptive event 
hazard function. At this point, robustness is so low that it can longer 
protect the critical infrastructure element and performance fails as a 
result of further disruptive event. 

Predicting the critical point of failure in performance is achieved by 
summing the resulting modelled values of dynamic robustness. The 
example presented above (Table 4) shows that the hazard of a disruptive 
event reached 40% in the exposure phase. In the same phase, the ele
ment’s robustness decreased to 32%. In the following phase (i.e. de- 
escalation), the hazard of the disruptive event reduced to a level of 
20%, with the element’s robustness at the end of the phase dropping to 
26%. If the disruptive event had continued its exposure, for example, 
with an additional increase of 10%, the element’s robustness in the de- 
escalation phase would have fallen to 16% and not been able to suffi
ciently protect the element, resulting in immediate failure of perfor
mance. In this case, the critical point of failure in performance of a 
critical infrastructure element was time t2. 

The following practical step of the application of the DRM method, 
which, however, is no longer the subject of the presented procedure, is 
the pragmatic formulation of measures in the context of the creation and 
subsequent implementation of the strategy and the aspect of corrections. 
The created repair strategy is also perceived by the author’s team as an 
important aspect of increasing the resilience of a selected group of ele
ments, where resilience is formed by attributes of robustness, recover
ability and adaptability. Given the necessary sustainability of this 
approach, after the implementation of the strategy can be expected to 
restart the continuous and cyclical process of dynamic modelling of 
robustness, taking into account the positive effect of the group of 
measures. 

5. Case study of DRM method application 

The DRM method has already been successfully tested on selected 
critical infrastructure entities in the Czech Republic and Slovakia. The 
most important of these are the Transmission System Operator of the 
Czech Republic and Central Slovak Power Distribution Company. The 
following text presents a practical application of the DRM method on a 
selected critical infrastructure element. For security reasons, the basic 
information (i.e. name, location, and structural and performance pa
rameters) about this element is anonymised, however, all parameters 
necessary for the validation of the assessment process are presented in 
the text. 

Step 1: A specific electricity critical infrastructure element was first 
selected for dynamic robustness modelling, along with a specific 
disruptive event to evaluate the selected element against. The selected 
element is a 400 kV transformer station, designated in accordance with 
the Council Directive of the European Union [1] and national criteria of 
the Czech Republic [70] as an element of European Critical Infrastruc
ture1. The selected disruptive event on this transformer station was an 
intentional man-made attack using explosives. 

Step 2: The element was then analysed, providing a classification of 
the element according to the electricity critical infrastructure, a 
description of the element’s structural and performance parameters, and 
identification of the data concerning factors which determine the 

Table 4 
Example of the sum of resulting values of dynamic robustness modelling over 
time according to the effect phase of a disruptive event.  

Effect phase of 
disruptive event 

Time Disruptive 
event hazard 
level 

Robustness 
level 

Δ 
Robustness 

Escalation t0 = 0 HEs = 20% R0 = 68% Δ REs = 14% 
t1 =

0.3 
R1 = 54% 

Exposure t1 =

0.3 
HEx = 40% R1 = 54% Δ REx = 22% 

t2 =

0.7 
R2 = 32% 

De-escalation t2 =

0.7 
HDe = 20% R2 = 32% Δ RDe = 6% 

t3 = 1 R3 = 26%  

1 European critical infrastructure (ECI) means critical infrastructure located 
in Member States the disruption or destruction of which would have a signifi
cant impact on at least two Member States. The significance of the impact shall 
be assessed in terms of cross-cutting criteria. This includes effects resulting from 
cross-sector dependencies on other types of infrastructure. 
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robustness of the element. The transformer station was classified ac
cording to the energy sector and electricity supply subsector, i.e. a 
transmission system with an electric system of a voltage of at least 110 
kV. Structural parameters: 400 kV transformer station, point topological 
structure [21], element redundancy according to the principle of N-1 
criterion2 [71]. Performance Parameters: the transformer station con
sists of seven key technologies: bus bars and branching, circuit breakers, 
disconnectors and ground switches, instrument voltage transformers, 
instrument current transformers, transformers, and compensating 
chokes. The element is protected by technical protection systems, 
physical security and routine measures according to the internal stan
dards of the operator [72–74]. 

Step 3: The next step defined the scenario of the selected disruptive 
event and its progress over time. This was achieved using Event Tree 
Analysis – ETA method [66]. The disruptive event scenario is presented 
in Fig. 9. 

Step 4: The hazard level was then determined. This was calculated 
using integral calculus [53] and consisted of two sub-steps: (a) hazard 
calculation according to the type of function, and (b) applying the var
iable intensity of the disruptive event in the calculation. 

Step 4a: The type of specific function for each phase and the in
tensity of the disruptive event at each time (i.e. t0 to t3) was analysed and 
subsequently determined. Due to the character of the disruptive event (i. 
e. an intentional man-made attack using improvised explosive device), 
an inverted exponential function (see Table 1) was assumed in the es
calation phase (i.e. t0 to t1). The exposure phase (i.e. t1 to t2) was not 
defined for this type of attack and an inverted exponential function (see 
Table 2) was therefore assumed in the de-escalation phase (i.e. t2 to t3). A 
graph of this disruptive event according to the function type is presented 
in Fig. 10. 

Step 4b: The intensity of the attack can be applied in the calculation 
according to the definition of the type of functions that determine the 
course of an intentional man-made attack. This intensity has a variable 
character. At t0 and t3, intensity is zero, while at t1 (and t2), it is derived 
from the scenario of the given disruptive event (Fig. 9). In this case, an 
intentional man-made attack was expected, which would result in 
a partial reduction in transformer functionality due to the destruction of 
an extra high voltage line. Based on this scenario, the intensity of the 
attack was set at level 4, or 80% (Table 5). 

The hazard values of the disruptive event at each stage, i.e. escala
tion, exposure, and de-escalation were calculated next. The values from 
above, i.e. the formula for the selected function type (see Fig. 11) and 
the intensity (see Table 5) of the disruptive event, were first applied in 
Eq. (4) to calculate the escalation phase. The result was then applied in 
Eq. (9):  

H(t)Es =

∫ 0.5

0

∫ 0.8

(0.5− 0)
1
4
•t

1
4

dIdt
0

(9)   

At an intensity of 80%, the effect of the attack on the transformer 
station resulted in a level of 32% in the disruptive event in the escalation 
phase. 

Although the exposure phase had a duration of zero, it could still be 
verified by inputting values into the equation for a constant character 
(Eq. (5)) since it fulfilled the condition of I1 = I2. The result is was as 
follows Eq. (10): 

H(t) =
∫ 0.5

0.5
0.8dt  

H(t) =
∫ 0.5

0.5
0.8dt = 0.8[t]0.50.5 = 0 (10) 

The final phase de-escalation phase was calculated according Eq. (6), 
resulting in Eq. (11): 

H(t) =
∫ 1

0.5

∫ − 0.8

(1− 0.5)
1
4
•(1− t)

1
4

0
dIdt  

H(t) =
∫ 1

0.5

− 0.8
(0.5)

1
4
• (1 − t)

1
4dt = − 0.9514 •

∫ 1

0.5
(1 − t)

1
4dt

= − 0.9514 •

⎡

⎢
⎣
(1 − t)

5
4

5
4

⎤

⎥
⎦

1

0.5

= 0.32 (11) 

At an intensity of 80%, the effect of the attack on the transformer 
station resulted in a level of 32% in the disruptive event in the de- 
escalation phase. 

Step 5: Building on the analysis of the transformer station, the level 
of its static robustness could be determined. For this step, the CIERA 
method [21] was applied. The CIERA method assesses not only the 
comprehensive level of resilience in the element but also the level of its 
individual components, i.e. robustness, recoverability and adaptability. 
The results of the assessing the element robustness are presented in 
Fig. 11. 

Step 6: Once the static robustness level of the electricity critical 
infrastructure element and the hazard level of the disruptive event were 
determined, the dynamic robustness of the transformer station could 
then be assessed according to the function and intensity of the attack. 
This step assesses the decrease in element robustness for each phase of 
the disruptive event. The robustness level occurring at the end of each 
phase was calculated according to Eq. (8). A summary of the values 
obtained from dynamic robustness modelling is presented in Table 6. 

Because the process of dynamic robustness modelling is mathemat
ically demanding, the authors created the DRM Tool application for 
users. The essence of this application is the comprehensive integration of 
the complete Dynamic Robustness Modelling Procedure (see Section 
4.2) into a user-friendly and easy-to-use environment. The tool is a 
software application which automatically calculates the resulting values 
for dynamic robustness modelling of an element after the input data (i.e. 
static robustness of the electricity critical infrastructure element and 

disruptive event scenario) is entered. This DRM Tool also allows the 
exposure phase to be omitted (as in the case study presented above) or 
extended over multiple time intervals. The resulting values of the case 
study using the DRM Tool are presented in Fig. 12. 

The DRM Tool can also chart the development of dynamic robustness 
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⎥
⎦
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= 0.32   

2 The N-1 criterion states that a system that is able to withstand at all times an 
unexpected failure or outage of a single system component, has an acceptable 
reliability level. This implies that some simultaneous failures could lead to local 
or widespread electricity interruptions. 
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and its relationship to a disruptive event, although it is only output as a 
simple line graph. A graph of the results of the case study using the DRM 
Tool is presented in Fig. 13. 

Step 7: The final step in modelling dynamic robustness in the 
transformer station was predicting its critical point of failure in perfor
mance. This condition occurs when the disruptive event hazard reaches 
a level greater than the robustness level of the element at a given time, 
assuming an increasing disruptive event hazard function. At this point, 
the absorption capacity of the robustness is exhausted and the element is 
no longer able to withstand the effects of the disruptive event. Fig. 13 
shows that at its peak (i.e. at time t1 = t2), the hazard level of the 
intentional man-made attack reached a level of 32%. In the same phase, 
the transformer station’s robustness decreased from 87% to 59%. At the 
end of the subsequent phase (i.e. de-escalation), the hazard level of the 
disruptive event dropped to zero, and the transformer station achieved a 
stable robustness level of 40% at the end of the phase. 

From the results, we can state that the critical point of failure in 
performance of the transformer station would not be reached and that it 
would continue supplying electricity. The factor contributing to this 
positive state was the transformer station’s high level of robustness, 
especially its crisis preparedness (100%), redundancy (78%) and phys
ical resistance (84%). 

Due to the fact that the selected critical infrastructure element has 
the point element character, it is possible to state a significant share of 
physical security in the overall degree of robustness. In this context, it is 
therefore possible to consider the increased importance of the basic 
functions of the physical protection system (i.e. detection, delay and 
response) and thus the need to design and configure the system with 
respect to its effectiveness. For these purposes, it is recommended to 
implement selected specific modelling tools (e.g. SAVI / ASSESS; Sprut 
(ISTA, Russia); Vega-2; SFZ Analyzer; SAPE; Assessment of Terrorist 
Attack in a Network of Objects) into the design configuration or modi
fication process, and the physical protection system effectiveness [75]. 
The results of this implementation can then be used to significantly 
robustness increase of a power critical infrastructure selected element. 

Fig. 9. Scenario of the selected disruptive event defined using the ETA method.  

Fig. 10. Graph expressing the selected disruptive event according to the type 
of function. 

Table 5 
Measurable items determining the intensity of an intentional man-made attack 
on a transformer substation.  

Description of measurable items in attack 
intensity 

Point 
values 

Percentages 

Complete restriction of functionality in a critical 
infrastructure element (i.e. 100% restriction of 
functionality) 

5 100% 

Complete shutdown of key technology and partial 
restriction of functionality in a critical infrastructure 
element (i.e. 50% restriction of functionality) 

4 80% 

Complete shutdown of key technology without 
restriction of functionality in a critical infrastructure 
element 

3 60% 

Partial shutdown of key technology without restriction 
of functionality in a critical infrastructure element 

2 40% 

Disruption of key technology without restriction of 
functionality in a critical infrastructure element 

1 20%  
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6. Conclusion 

The article presented a stochastic DRM (dynamic robustness 
modelling) method. The method uses integral calculus and analysis of 
dynamic robustness in elements in the context of a predicted disruptive 
event scenario. The method quantifies the negative effect of predicted 
disruptive events and the subsequent decrease in robustness due to this 
effect at the expected time of exposure. The method can predict critical 
point of failure in performance in electricity critical infrastructure ele
ments and identify weaknesses that contribute to insufficient protection 
and subsequent failure of performance. 

The DRM method is primarily designed to assess dynamic robustness 
of technical elements of generation, transmission and distribution of 
electricity critical infrastructure, such as plants with a total installed 
electrical capacity of at least 500 MW, transmission system lines of at 
least 110 kV, transformer stations and technical dispatching. However, 
the assessment principle can also be applied in dynamic modelling of the 
robustness of other elements of the energy sector, such as oil and gas 
elements. The resulting information can be used as a guide for man
agement—weaknesses can be identified and subsequently removed, 
thereby strengthening robustness, which is a crucial factor in the secu
rity of a critical infrastructure system. The DRM method has already 
been successfully applied to several critical infrastructure entities in the 
Czech Republic and the Slovak Republic, such as the Transmission 
System Operator of the Czech Republic and Central Slovak Power Dis
tribution Company. 

The article presented a practical demonstration of the DRM method 
in a case study. The selected element was an electricity transmission 
system’s transformer station, designated in accordance with the Council 
Directive of the European Union and national criteria of the Czech Re
public as an element of European Critical Infrastructure. The selected 
disruptive event on this transformer station was an intentional man- 
made attack using explosives. The analysis showed that the robustness 
of the transformer station after the attack dropped from its default of 
87% to 40%, however no critical point of failure in performance was 
achieved and the station remained functional. The factor contributing to 
this positive state was the transformer station’s high level of robustness, 
especially its crisis preparedness, redundancy, and physical resistance. 
However, the transformer station had specific weaknesses: the backup of 
the technical protection system, the reparability of the assets key tech
nology, and long-term time horizon of repairing or replacing key 
technology. 

The DRM method was created in order to fill the current research gap 
in the field of critical infrastructure protection. The main motivation was 
the fact that current approaches focus mainly on the critical infra
structure elements static resilience assessment in the context of the 
entire network resilience. For this reason, they do not allow the pre
diction of a dynamic decrease in the critical infrastructure individual 
elements resilience depending on the effect of the adverse event. The 
DRM method thus brings a completely new perspective on assessing the 
robustness of electricity critical infrastructure elements at the elemen
tary level. The assessed robustness is thus tied to a specific critical 
infrastructure element and is not limited by the perspective of inter
sectoral failure, within which it is in principle impossible to distinguish 
between static and dynamic resilience. 

At the same time, however, it must be stated that the proposed DRM 
method is limited by certain facts in its application. Primarily, it should 
be noted that the DRM method is a preliminary predictive tool whose 
ambition is not to provide exact information but a general overview of 
the expected decrease in robustness at the time of the disruptive event. 
The assessment results serve the user for basic orientation, i.e. the 
identification of weak points and predicting the critical point of failure 
in performance of the element. The use of the CIERA method, which is 
based on the subjective user assessment, can be considered as a 

Fig. 11. Assessment of element robustness in an intentional man-made attack using CIERA method.  

Table 6 
Resulting values of dynamic robustness modelling of the transformer station 
according to the effects of the disruptive event.  

Phase of effect of 
disruptive event 

Time Hazard level of 
disruptive event 

Robustness 
level 

Δ 
Robustness 

Escalation t0 = 0 HEs = 32% R0 = 87% Δ REs = 28% 
t1 = 0.5 R1 = 59% 

Exposure t1 = 0.5 HEx = 0% R1 = 59% Δ REx = 0% 
t2 = 0.5 R2 = 59% 

De-escalation t2 = 0.5 HDe = 32% R2 = 59% Δ RDe = 19% 
t3 = 1 R3 = 40%  

D. Rehak et al.                                                                                                                                                                                                                                  



International Journal of Electrical Power and Energy Systems 136 (2022) 107700

14

secondary limitation. Based on these facts, the DRM method can be 
considered as a simplified model providing initial information that is the 
basis for further user decisions. Despite these limitations, an important 
aspect of the novelty and benefits of the DRM method is the convergence 
of currently available best practices and integral calculus. The practical 
aspect of the application of the methodology is positively reflected at 
least in the V4+ area, despite considering the national specifics of the 
critical infrastructure protection environment. 

Further development of the DRM method can be seen mainly in its 
extension by other components of resilience, i.e. recoverability and 
adaptability. This convergent approach would thus allow complex dy
namic modelling of resilience as a whole. As a result, the method would 
allow the quantification of the negative impacts of predicted adverse 
events and the identification of weaknesses also in the phase of element 
recovery and adaptation. This extension of the DRM method would thus 
provide more comprehensive information important for the integrated 
electricity critical infrastructure element protection. 
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Resilience Report 9). Zurich: Eidgenössische Technische Hochschule; 2015. 

[27] Petit F, Bassett G, Black R, Buehring W, Collins M, Dickinson D, et al. Resilience 
Measurement Index: An Indicator of Critical Infrastructure Resilience. Lemont, IL: 
Argonne National Laboratory; 2013. 

[28] Trucco P, Cagno E, De Ambroggi M. Dynamic functional modelling of vulnerability 
and interoperability of critical infrastructures. Reliab Eng Syst Saf 2012;105: 
51–63. https://doi.org/10.1016/j.ress.2011.12.003. 

[29] Ouyang M. Review on modeling and simulation of interdependent critical 
infrastructure systems. Reliab Eng Syst Saf 2014;121:43–60. https://doi.org/ 
10.1016/j.ress.2013.06.040. 

[30] Cavallini S, d’Alessandro C, Volpe M, Armenia S, Carlini C, Brein E, et al. A System 
Dynamics Framework for Modeling Critical Infrastructure Resilience. In: Butts J, 
Shenoi S, editors. Critical Infrastructure Protection VIII. Berlin: Springer; 2014. 
p. 141–54. 

[31] Canzani E. Dynamic Interdependency Models for Cybersecurity of Critical 
Infrastructures. [Dissertation]. Munich: Bundeswehr University Munich; 2017. 

[32] Goldbeck N, Angeloudis P, Ochieng WY. Resilience assessment for interdependent 
urban infrastructure systems using dynamic network flow models. Reliab Eng Syst 
Saf 2019;188:62–79. https://doi.org/10.1016/j.ress.2019.03.007. 

[33] Wang D, Tian S, Fang L, Xu Y. A functional index model for dynamically evaluating 
China’s energy security. Energy Policy 2020;147:111706. https://doi.org/ 
10.1016/j.enpol.2020.111706. 

[34] Petit F, Verner D, Brannegan D, Buehring W, Dickinson D, Guziel K, et al. Analysis 
of Critical Infrastructure Dependencies and Interdependencies. Lemont, IL: 
Argonne National Laboratory; 2015. 

[35] Ducard G. Modeling and Analysis of Dynamic Systems. Zurich: Institute for 
Dynamic Systems and Control; 2017. 

[36] Irwin M, Wang Z. Dynamic Systems Modeling. In: Matthes J, Davis ChS, Potter RF, 
editors. The International Encyclopedia of Communication Research Methods. 
Hoboken, NJ: Wiley; 2017. https://doi.org/10.1002/9781118901731.iecrm0074. 

[37] Rey SJ. Mathematical Models in Geography. In: Wright JD, editor. International 
Encyclopedia of the Social & Behavioral Sciences. Amsterdam: Elsevier; 2015. 
p. 785–90. https://doi.org/10.1016/B978-0-08-097086-8.72033-2. 

[38] ITRC. Graphical Methods. Washington, DC: Interstate Technology and Regulatory 
Council; 2013. 

[39] Chiesi AM. Network analysis. In: Wright JD. Editors. International Encyclopedia of 
the Social & Behavioral Sciences. Amsterdam: Elsevier; 2015. p. 518-523. https:// 
doi.org/10.1016/B978-0-08-097086-8.73055-8. 

[40] Murray AT, Matisziw TC, Grubesic TH. Critical network infrastructure analysis: 
interdiction and system flow. J Geogr Syst 2007;9:103–17. https://doi.org/ 
10.1007/s10109-006-0039-4. 

[41] Eusgeld I, Kröger W, Sansavini G, Schläpfer M, Zio E. The role of network theory 
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